Stabilität geodätischer Meßpunkte - Erkenntnisse aus Neigungsmessungen in der Niederrheinischen Bucht

Geodätische Meßkampagnen (z.B. GPS, Schwere) werden häufig als Wiederholungsmessungen durchgeführt. Dabei wird angenommen, dass etwaige Punktverschiebungen zwischen einzelnen Kampagnen in der Regel interpolierbar sind. Im Hinblick auf eine weitere Genauigkeitssteigerung kann die lokal auftretende Bodendynamik ein begrenzender Faktor bei dieser Vorgehensweise sein. Zur Abschätzung der Größenordnung lokaler Bodendeformationen haben wir in den Jahren 1996 bis 1999 im Rahmen des Bonner SFB350 ("Wechselwirkungen kontinentaler Stoffsysteme und ihre Modellierung") an drei ausgewählten Lokationen in der Niederrheinischen Bucht (NRB) kontinuierliche Bohrlochneigungsmessungen in Tiefen von 2 bis 4 m durchgeführt (Applied Geomechanics Tiltmeter, Typ 722; Länge 0,85m). Der Untergrund besteht aus quartären Sedimenten bei unterschiedlichen Grundwassertiefen. Um auf die Hauptursachen für die Bodenbewegungen schließen zu können, haben wir zusätzlich Grundwasserstände und meteorologische Meßgrößen aufgezeichnet. Im Beobachtungszeitraum konnten wir lokale Bodendeformationen mit Amplituden von max. +/-50 Mikrometern/Meter (= +/- 50 microstrain) nachweisen. Für Einzelprozesse lassen sich angeben: +/-30 Mikrometern/Meter für saisonale Effekte (insbes. Grundwasserstands Schwankungen und thermoelastische Verformungen), +/-10 Mikrometern/Meter für Niederschlagseffekte, +/-1 Mikrometer/Meter für Tagesschwankungen (Temperatur effekte und Porendruck störungen durch vegetative Wässerentnahme). Unter der Annahme, dass die beobachteten horizontalen Relativverschiebungen auch vertikal auftreten und sich jeweils auf Strecken bis zu 10 m Länge übertragen lassen, ergeben sich hierdurch Punkt bewegungen bis zu 0,5 mm und (Freiluft)-Schwereeffekte bis zu 150 ngal (1,5 nm s⁻²).